Preliminary communication

NO₂ as a single electron oxidant

ROLF H. REIMANN and ERIC SINGLETON*

National Chemical Research Laboratory, South African Council for Scientific and Industrial Research, Pretoria (Republic of South Africa)

(Received July 2nd, 1973)

SUMMARY

Nitrogen dioxide has been shown to possess powerful oxidative properties which are a major effect in certain nitrosylation reactions; it has also been shown to provide a route to dicationic substituted manganese carbonyl salts.

Recently we reported¹ on the use of nitrosylhexafluorophosphate as a convenient method for bringing about single electron oxidation of transition metal compounds. We now find that nitrogen dioxide possesses similar oxidative properties, suggesting similar scope and diversity of NO₂ as an oxidant for organometallic compounds in various solvents without the solubility problems encountered with NOPF₆. Thus, paralleling our previous NOPF₆ work, reaction of *cis*-[Mo(CO)₂ (DPE)₂] with NO₂ gas in warm chloroform solution gives *trans*-[Mo(CO)₂ (DPE)₂]⁺ almost instantly, and [(Cp)Fe(CO)₂]₂ is oxidised by NO₂ under similar conditions to give the known² cation [(Cp)Fe(CO)₃]⁺ after 15 min^{*}.

Since NO₂ is considerably more reactive towards transition metal compounds than nitric oxide, our results indicate that many nitrosylation reactions which utilise nitric oxide yield oxidised by-products unless completely anaerobic conditions are maintained. Thus we have reinvestigated several reported nitrosylation reactions involving nitric oxide. $[Mn(CO)_3 L_2 Br] (L = P(OPh)_3)$ has been reported³ to give $[Mn(NO)_2 L_2 Br]$ with NO gas. We find that with NO in the presence of small amounts of air, an immediate darkening of colour occurs in a variety of solvents, giving the oxidised product *fac*- $[Mn(CO)_3 L_2 Br]^+$ as an oil. This product is identified from analogous $\nu(CO)$ bands in the infrared spectra of the series *fac*- $[Mn(CO)_3 L_2 Br]^+ (L = PMe_2 Ph, AsMe_2 Ph; L_2 = DPE, DPM)$, which we have prepared by NOPF₆ oxidation of the corresponding $[Mn(CO)_3 L_2 Br]$ compounds¹.

We find that *mer-cis*- $[Mn(CO)_2 \{P(OMe)_2 Ph\}_3 Br]$ also reacts with NO gas in refluxing cyclohexane under anaerobic conditions to give the dinitrosyl species,

* Cp = Cyclopentadienyl, DPE = $(C_6H_5)_2$ PCH₂ CH₂ P(C₆H₅)₂, DPM = $(C_6H_5)_2$ PCH₂ P(C₆H₅)₂

 $[Mn(NO)_{2} L_{2} Br] (L = P(OMe)_{2} Ph) after 10 min. The increased reactivity of$ $mer-cis-[Mn(CO)_{2} L_{3} Br] towards nitric oxide, compared to the reaction times reported for$ $[Mn(CO)_{3} L_{2} Br] to form [Mn(NO)_{2} L_{2} Br], can be explained on steric grounds⁴. Again, if$ any oxygen is present in the system, an instantaneous oxidation of $mer-cis-[Mn(CO)_{2} {P(OMe)_{2} Ph}_{3} Br] occurs, giving the deep red coloured cation,$ $mer-trans-[Mn(CO)_{2} {P(OMe)_{2} Ph}_{3} Br] ⁺ which can also be prepared directly from$ $mer-cis-[Mn(CO)_{2} {P(OMe)_{2} Ph}_{3} Br] and NO_{2} in a variety of organic solvents.$ $Mer-trans-[Mn(CO)_{2} L_{3} Br]⁺ (L = P(OMe)_{2} Ph) reacts further with P(OMe)_{2} Ph in refluxing$ $chloroform solution to give cis-[Mn(CO)_{2} L_{4}]⁺, which rapidly undergoes oxidation with$ $NO₂, yielding trans-[Mn(CO)_{2} L_{4}]²⁺ at room temperature. Similarly,$ $mer-cis-[Mn(CO)_{2} {P(OMe)_{2} Ph}_{3} Br] in warm acetonitrile solution) is oxidised by NO₂ in$ $dichloromethane solution to give mer-trans-[Mn(CO)_{2} {P(OMe)_{2} Ph}_{3} CH_{3} CN]^{2+}$

 $[Mn(CO)_4(PPh_3)]_2$ has been reported⁶ to react with NO gas to give a mixture of $[Mn(NO)(CO)_4]$ and $[Mn(NO)(CO)_3(PPh_3)]$ in solution. With NO₂ gas, however, no product is isolated from the darkened reaction solution unless a strongly coordinating solvent is used. Thus in acetonitrile solution the reaction gives entirely cis- $[Mn(CO)_4(PPh_3)(CH_3CN)]^+$. This can be related to the reported⁷ reaction of $[Mn_2(CO)_{10}]$ with NOPF₆ to give $[Mn(CO)_5(CH_3CN)]^+$ in the same solvent.

IR data of these compounds are given in Table 1.

TABLE 1

IR DATA OF CARBONYL AND NITROSYL COMPOUNDS

Compound	Medium	$\nu(CO) \ cm^{-1}$	$\nu(NO) \ cm^{-1}$
$[Mn(NO)_{2} {P(OMe)_{2} Ph}_{2} Br]$	CHCl,	······································	1727s, 1676s
mer-trans- $[Mn(CO)_2 \{P(OMe)_2 Ph\}_3 Br] PF_6$	CHCI	2065w, 1981s	
$cis-[Mn(CO)_2 \{P(OMe)_2 Ph\}_4]PF_6$	CHCl,	1991s, 1937s	
trans-[Mn(CO) ₂ {P(OMe) ₂ Ph }] (PF ₆) ₂	CHCI,	2054w, 1993s	
cis-[Mn(CO) ₄ (PPh ₃)(CH ₃ CN)]PF ₆	CHCl ₃	2112m, 2044sh,	
	-	2028s, 1992m	
mer-cis-[Mn(CO) ₂ { $P(OMe)_2$ Ph } ₃ (CH ₃ CN)]ClO ₄	CH, CL,	1985s, 1915s	
$mer-cis-[Mn(CO)_2 {P(OMe)_2 Ph}_3 (CH_3 CN)]ClO_4$ mer-trans-[Mn(CO)_2 {P(OMe)_2 Ph}_3 (CH_3 CN)](PF_6)_2	CH ₂ Cl ₂	2093w, 2014s	

The similarity in oxidising properties of NOPF_6 and NO_2 may arise from the fact that dinitrogen tetroxide behaves as nitrosyl nitrate in organic donor solvents⁸. We are extending the range of these reactions to produce new cationic transition metal compounds.

REFERENCES

- 1 R.H. Reimann and E. Singleton, J. Organometal. Chem., 32 (1971) C44.
- 2 E.C. Johnson, T.J. Meyer and N. Winterton, Inorg. Chem., 10 (1971) 1673.
- 3 W. Hieber and H. Tengler, Z. Anorg. Chem., 318 (1962) 136.
- 4 R.H. Reimann and E. Singleton, J. Chem. Soc. Dalton Trans., (1973) 841.

PRELIMINARY COMMUNICATION

- '

- 5 R.H. Reimann and E. Singleton, in preparation.
- 6 H. Wawersik and F. Basolo, Inorg. Chem., 6 (1967) 1066.
- 7 N.G. Connelly and L.F. Dahl, Chem. Commun., (1970) 880.
- 8 C.C. Addison, J.C. Sheldon and N. Hodge, J. Chem. Soc., (1956) 3900.